Developments in Passenger Safety

Lowell W. Roemke
BFGoodrich Aerospace
Safety Systems Division
Passenger Restraint Systems

Aircraft Seat Crashworthiness Standards Evolution

First Aircraft Crash Studies Civil Air Regulation 9g Standards

FAA Revised Standards to 16g

First 16g A/C Certification

1940's 1950's 1980's 1990's

- 75 to 80% of All Aviation Accidents Are Survivable
- Crashworthiness Standards Have Developed Slowly

Passenger Safety Standards Have Become More Stringent Over Past Decade

Why New Restraint Devices Now?

- FAA Position on 16g Requirements
 - New Aircraft Certifications require compliance
 - 16g Retrofit Rule Forthcoming for fleet
- Industry Reaction to 16g Requirements
 - Industry looking for solution to HIC at Bulkheads and Monuments
 - Current Means offer negative appeal

The 16 g Crash Event

The 16 g Crash Event

Head Injury Criterion - HIC

HIC =
$$[(t_2-t_1)]$$
 $[-t_2-t_1]$ $[-t_2-t_1]$ $[-t_2-t_1]$ $[-t_2-t_1]$ $[-t_2-t_1]$ MAX

The Maximum Value of HIC is Limited to 1000

HIC Requirements Impact Airlines

- Increasing seat pitch reduces revenues
 - Airlines would lose thousands of seats in their fleet
- "Damping Devices" add weight and cost
 - Articulating seat pans
 - "Break-away" seat backs
 - Air bags
- Modified seat belts still require some amount of "setback" from hard points

Typical Wide Body Cabin Layout

Bulkhead Positions are Critical for HIC Compliance

7% - 10% of all Seat Positions

InflatabeltTM Restraint System

- BFG Inflatabelt™ Transparent to Passenger
 - Appearance similar to current seat belts
- Goal: Universal Design, Attaches to Standard Belt Mount
- Integrated: Inflator/Self Powered Detector/ Firing System

InflatabeltTM Restraint System

- Design Philosophy
 - Inflatabelt™ Restraint System
 - Pretensioning
 - Load distribution
 - Energy absorption
 - Eliminate bulkhead contact

Head Velocity in the Crash

Head Deceleration in the Crash

Sequence Of Events

Non-Intrusive Appearance

Deployment Pre-Tensions Belt, Restricts Forward Motion and Rotation of Chest and Head

Deflates Rapidly to Enable Egress

Actuation Module - Belt Mount

- Simple Tube
 Extension for
 Universal Mounting,
 Adapts to Seat
 Spreader
 - Inflator
 - Sensor
 - Anchor

Crash Sensor

Fires Inflator Very Early in Crash Event

Is Not Activated When Exposed to Turbulence, Normal Vibration or RTO Thresholds

Direct Thermal Inflator, DIIIIM

- Lowest Outlet Gas Temperature Inflator Available
 - Cool Gas Inflator opens range of fabric choices
- Non-Toxic Inert Gas by Products Argon, Nitrogen, CO₂
- DOT Class III Certified Structurally Sound
- Small Size & Configuration Flexibility

Deployment Module, Tubular Webbing

- Airbag Stowed Inside Seat Belt
- Inflatable Deploys from Tubular Webbing

Deployment Module, Inflatable

- Polyurethane Coated Nylon
 - Lightweight/high modulus
- Air Retentive Fabric Meets Aircraft Flammability Requirements
- Good Packability/Low Belt Thickness

Development Approach

- Modeling Simulation
 - MADYMO -Mathematical Dynamic Model
 - Seat FEA
 - Full Occupant Kinematics
 - CFD Compatible (Thermodynamics)

Comparisons - Start

Standard Belt

Inflatabelt™

Time Bar in Milliseconds

Acrospace
Safety Systems Division

Comparisons - Midpoint

Standard Belt

Inflatabelt™

Time Bar in Milliseconds

Comparisons - End

Standard Belt

Inflatabelt™

Time Bar in Milliseconds

180

Goodrich

Aerospace

Safety Systems Division

Dynamic Test Facilities - Exponent

InflatabeltTM Sled Test

Results of 12/19/98 Sled Test

Method HIC

Sled Test 115 Dummy

Model Prediction 105

Note: As There Was No Contact With Bulkhead or Aircraft Structure, HIC Would Be Zero By FAA Standards

Closing Remarks Summary

FAA 16g Rule is Pacing Market

Industry Poorly Prepared for 'HIC' Requirements

BFG Has Excellent 'Technical Solution'

Market Introduction Will Span 2 - 3 Years